Modeling farmers’ decisions on tea varieties in Vietnam: a multinomial logit analysis
نویسندگان
چکیده
منابع مشابه
The Generalized Multinomial Logit Model
The so-called “mixed” or “heterogeneous” multinomial logit (MIXL) model has become popular in a number of fields, especially Marketing, Health Economics and Industrial Organization. In most applications of the model, the vector of consumer utility weights on product attributes is assumed to have a multivariate normal (MVN) distribution in the population. Thus, some consumers care more about som...
متن کاملVariational Multinomial Logit Gaussian Process
Gaussian process prior with an appropriate likelihood function is a flexible non-parametric model for a variety of learning tasks. One important and standard task is multi-class classification, which is the categorization of an item into one of several fixed classes. A usual likelihood function for this is the multinomial logistic likelihood function. However, exact inference with this model ha...
متن کاملMultinomial logit random effects models
This article presents a general approach for logit random effects modelling of clustered ordinal and nominal responses. We review multinomial logit random effects models in a unified form as multivariate generalized linear mixed models. Maximum likelihood estimation utilizes adaptive Gauss–Hermite quadrature within a quasi-Newton maximization algorithm. For cases in which this is computationall...
متن کاملA Note on the Estimation of the Multinomial Logit Model
The multinomial logit model with random eeects is often used in modeling correlated nominal polytomous data. Given that there is no standard software of tting it, we advocate using either a Poisson log-linear model or a Poisson nonlinear model, both with random eeects. Their implementations can be carried out easily by many existing commercial statistical packages including SAS. A brand choice ...
متن کاملVariable selection in general multinomial logit models
The use of the multinomial logit model is typically restricted to applications with few predictors, because in high-dimensional settings maximum likelihood estimates tend to deteriorate. In this paper we are proposing a sparsity-inducing penalty that accounts for the special structure of multinomial models. In contrast to existing methods, it penalizes the parameters that are linked to one vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agricultural Economics
سال: 2016
ISSN: 0169-5150
DOI: 10.1111/agec.12334